The NH2 terminus of preproinsulin directs the translocation and glycosylation of a bacterial cytoplasmic protein by mammalian microsomal membranes

نویسندگان

  • E M Eskridge
  • D Shields
چکیده

To investigate putative sorting domains in precursors to polypeptide hormones, we have constructed fusion proteins between the amino terminus of preproinsulin (ppI) and the bacterial cytoplasmic enzyme chloramphenicol acetyltransferase (CAT). Our aim is to identify sequences in ppI, other than the signal peptide, that are necessary to mediate the intracellular sorting and secretion of the bacterial enzyme. Here we describe the in vitro translation of mRNAs encoding two chimeric molecules containing 71 and 38 residues, respectively, of the ppI NH2 terminus fused to the complete CAT sequence. The ppI signal peptide and 14 residues of the B-chain were sufficient to direct the translocation and segregation of CAT into microsomal membrane vesicles. Furthermore, the CAT enzyme underwent N-linked glycosylation, presumably at a single cryptic site, with an efficiency that was comparable to that of native glycoproteins synthesized in vitro. Partial amino-terminal sequencing demonstrated that the downstream sequences in the fusion proteins did not alter the specificity of signal peptidase, hence cleavage of the ppI signal peptide occurred at precisely the same site as in the native precursor. This is in contrast to results found in prokaryotic systems. These data demonstrate that the first 38 residues of ppI encode all the information necessary for binding to the endoplasmic reticulum membrane, translocation, and proteolytic (signal sequence) processing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Truncations of a secretory protein define minimum lengths required for binding to signal recognition particle and translocation across the endoplasmic reticulum membrane.

Nascent preproinsulin interacts with endoplasmic reticulum membranes after approximately 70-80 residues of the 116-amino acid precursor are polymerized (Eskridge, E. M., and Shields, D. (1983) J. Biol. Chem. 258, 11487-11491). To understand the relationship between the size of a nascent presecretory polypeptide and the efficiency of its translocation across the endoplasmic reticulum membrane, r...

متن کامل

NH2-terminal substitutions of basic amino acids induce translocation across the microsomal membrane and glycosylation of rabbit cytochrome P450IIC2

Insertion of rabbit cytochrome P450IIC2 and its modified form, [2-lys,3-arg]P450IIC2, into microsomal membranes was studied in an in vitro transcription/translation/translocation system. Cytochrome P450IIC2, synthesized in the presence of chicken oviduct microsomal membranes, was resistant to extraction by alkaline solutions, but was sensitive to proteolytic digestion. In contrast, when [2-lys,...

متن کامل

Positive charges at the NH2 terminus convert the membrane-anchor signal peptide of cytochrome P-450 to a secretory signal peptide.

The NH2-terminal sequences of cytochromes P-450 resemble signal peptides, but these sequences are not cleaved during the insertion of these integral membrane proteins into the microsomes. To examine whether these putative signal peptides are functionally equivalent to signal peptides of secretory proteins, cDNA coding for a fusion protein was produced, in which the signal peptide for prepropara...

متن کامل

Topogenic analysis of the human immunodeficiency virus type 1 envelope glycoprotein, gp160, in microsomal membranes

The orientation in cellular membranes of the 856 amino acid envelope glycoprotein precursor, gp160, of human immunodeficiency virus type 1 was investigated in vitro. Variants of the env gene were transcribed using the bacteriophage SP6 promoter, translated using a rabbit reticulocyte lysate, and translocated into canine pancreatic microsomal membranes. Immunoprecipitation studies of gp160 varia...

متن کامل

Signal Recognition Protein Is Required for the Integration of Acetylcholine Receptor 8 Subunit, a Transmembrane Glycoprotein, into the Endoplasmic Reticulum Membrane

Purified Signal Recognition Protein (SRP) has previously been shown to be required for the translocation of secretory proteins across the microsomal membrane (Walter and Blobel, 1980 . Proc. Nat/ . Acad. Sci. U . S. A. 77:7,112-7,116) and to function in the early events of this process (Walter and Blobel, 1981. J. Cell Biol . 91 :557-561) . We demonstrate here that the S subunit of acetylcholin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 103  شماره 

صفحات  -

تاریخ انتشار 1986